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2UniversitéLibre de Bruxelles, Service de Chimie-Physique, Case Postale 231, Boulevard du Triomphe, 1050 Bruxelles, Belgium

~Received 28 May 1996!

The numerical resolution of the Langevin equations, with specific internal noises deduced from master
equations, exhibits two qualitatively different behaviors for the reaction-diffusion wave fronts associated with
either a cubic or a quadratic chemical rate. In the case of a wave front between two stable stationary states,
illustrated by the Schlo¨gl model, the effect of fluctuations in the vicinity of a bifurcation induces perturbative
deviations from the deterministic predictions on observable properties, like the propagation velocity, the profile
width, and the value of the highest plateau. These deviations obey power laws that are determined. For wave
fronts propagating into an unstable stationary state, such as in the Fisher model, a nonperturbative fluctuation
effect on velocity and profile width is observed, in relation to the selection, in the presence of noise, of a
particular solution in the continuum of linearly stable deterministic solutions.@S1063-651X~96!03010-3#

PACS number~s!: 47.70.Fw, 82.20.2w, 05.40.1j

I. INTRODUCTION

The macroscopic description of spatiotemporal patterns
@1–3# in nonhomogeneous chemical systems involves partial
differential equations, also encountered in various domains
ranging from biology to physics or economics. We are inter-
ested here in the propagation of wave fronts@1–11# defined
as uniformly translating solutions of reaction-diffusion equa-
tions, replacing a homogeneous stationary state by another
homogeneous stationary state. A wave front appears as a
stationary spatial structure in an appropriate moving frame.

In the framework of population dynamics, Fisher@4# and
Kolmogorov, Petrovski, and Piskunov@5# introduced at the
same time a simple model in order to describe the propaga-
tion of a favored genetic character through a population. This
model, further referred as the Fisher model for the sake of
briefness, is associated with a quadratic chemical rate. The
corresponding reaction-diffusion equation admits wave-front
solutions propagating between a stable stationary state and
an unstable stationary state. Reducing the dynamics to the
evolution in the frame moving at the wave-front velocity, a
linear stability analysis of the wave front does not lead to the
selection of a unique stable solution. It prescribes only a
lower bound to a continuous velocity spectrum associated
with the set of linearly stable solutions@4–9#. Later, Schlo¨gl,
Escher, and Berry@10# proposed a different chemical model
associated with a cubic kinetics in order to compare bistabil-
ity in nonequilibrium systems and the liquid-gas transition.
The Schlo¨gl model has been specially designed to give rise
to a pitchfork bifurcation, in many respects analogous to the
second order phase transition observed during the liquefac-
tion of a gas in the vicinity of the critical point. Depending
on the parameter values, the reaction-diffusion equation as-
sociated with the Schlo¨gl model admits either one or three
homogeneous stationary states. In this last case, it possesses
a unique stable wave-front solution connecting the two stable
stationary states@10,11#. Contrary to the Fisher case, the dy-
namics prescribes a well-defined and unique propagation ve-
locity.

Our aim is not to apply these models to specific physical
problems but to use them as generic situations, and to discuss
the validity of the macroscopic deterministic description of
the two different wave-front types they generate. Actually,
reducing the dynamics of a large number of individuals to
the deterministic evolution of macroscopic variables requires
a strong assumption about the range of statistical correlations
that we are now able to test, thanks to the improvement of
computational tools. Whatever the nature of the elementary
systems considered, whether it consists of molecules, living
beings, or financial assets, their microscopic dynamics gen-
erates fluctuations around the statistical mean behavior
which may induce observable deviations to the predicted de-
terministic behavior.

Near a transition, fluctuations developing in equilibrium
systems are amplified so as to reach a macroscopic level
leading for example to the opalescence of a fluid maintained
in the vicinity of the critical point. Analogous phenomena
are observed in nonequilibrium systems@12–14# for param-
eter values corresponding to a bifurcation. In this respect, the
Schlögl model is certainly well suited to analyze the modifi-
cations of the wave-front properties when the three stationary
states coalesce and when the effect of fluctuations is taken
into account. The Fisher model illustrates an other degener-
ate situation, where the fluctuations are supposed to play a
major role. Indeed, the existence of a continuum of propaga-
tion velocities associated with linearly stable wave fronts
may enhance the sensitivity to fluctuations, and it may be
asked whether internal noise influences the selection of a
particular propagation velocity in the spectrum.

The two types of reaction-diffusion wave fronts have al-
ready been studied using lattice-gas cellular automata
~LGCA! @15–22#, the master equation@23–26# or Monte
Carlo simulations@23,24,27#, and stochastic partial differen-
tial equations@28,29#. Hereafter, mean refers to a time aver-
age of a front property for a given initial condition, and for
an approach including the description of fluctuations. Up to
now, discrepancies between mean wave-front properties and
corresponding deterministic predictions have only been ob-
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served in the case of the Fisher model, using stochastic par-
tial differential equations@29# to take internal noise into ac-
count. Moreover, the quantitative determination of the
deviation dependence on the fluctuation amplitude was lim-
ited to the propagation velocity.

In the present work, we choose to describe the internal
fluctuations at a mesoscopic level. Adopting the Langevin
formalism, our stochastic approach@29# amounts to adding
specific noise terms to the deterministic partial differential
equations. The noise statistics, deduced from a master equa-
tion @12–14# and then reduced to a Gaussian distribution, is
designed to reproduce the macroscopic consequences of the
internal fluctuations. From an analysis of fluctuation effects,
we intend to deduce quantitative characteristics allowing for
a classification of the different wave-front types. Knowing
that, in the case of the wave front associated with the Fisher
model, the velocity deviation from the deterministic predic-
tion varies like a power of the fluctuation amplitude@29#, we
wish to determine if an analogous behavior is also observed
for the different wave-front type associated with the Schlo¨gl
model. We then intend to compare the exponent values of the
scaling laws. Contrary to microscopic simulations@15–
22,27#, the mesoscopic approach used here consists of the
numerical resolution of stochastic equations. It preserves the
analytical character of the description, and makes easier a
comparison with the deterministic analysis. In particular, the
parameters of the deterministic equations appear also in the
stochastic description contrary to the case of LGCA@21#. In
such microscopic simulations, the relation between micro-
scopic and deterministic parameters is not always obvious,
and the precision of its determination limits the accuracy of
the results concerning the wave front. Nevertheless, the abil-
ity of the Langevin approach to reproduce faithfully the con-
sequences of the underlying microscopic dynamics needs to
be checked. Up to now, the equivalence of the Langevin
formalism and a microscopic simulation based on LGCA has
been proved with regard to the geometrical properties of
wave fronts@30#. Indeed, we obtain an excellent agreement
between the fractal dimensions of two-dimensional~2D!
wave fronts deduced from the two different methods.

II. TWO TYPES OF REACTION-DIFFUSION
WAVE FRONTS

We analyze two different chemical models, corresponding
either to a quadratic or a cubic chemical rate, respectively
known as the Fisher model@1–9# and the Schlo¨gl model
@10,11#. In each case, we consider an infinite one-
dimensional~1D! medium containing different chemical spe-
cies that diffuse with an identical coefficientD.

The Fisher model@1–9# involves two speciesA andB,
reacting according to the following autocatalytic step of rate
constantK:

A1B→2A. ~1!

Since reaction~1! keeps constant the total number of par-
ticles, the local macroscopic concentrations,Ā(x,t) and
B̄(x,t), obey

Ā~x,t !1B̄~x,t !5C, ~2!

whereC is constant so that the deterministic evolution of the
system reduces to a single partial differential equation for the
dimensionless fractionā[ā(x,t)5Ā(x,t)/C:

]ā

]t
5KCā~12ā!1D

]2ā

]x2
, ~3!

with 0<ā<1, and wheret is time andx the spatial coordi-
nate.

The reaction-diffusion equation~3! admits uniformly
translating solutions,ā(x2Vt), moving with a constant ve-
locity V and replacing the unstable uniform stationary state
ā50 by the stable stateā51. A linear stability analysis
around such wave-front solutions in the moving frame at
velocityV does not allow for the selection of a given veloc-
ity. Indeed, an essential feature@1–9# of Eq. ~3! is the exist-
ence of linearly stable solutions for any propagation velocity
V greater than a minimum valueV̄ given by

V̄52AKCD. ~4!

Mathematical results@6# state that a large class of sufficiently
steep initial profiles evolve in time to the stable solution
ā(x2V̄t) propagating with this minimum allowed velocity.
The analytical expression of the stationary profile propagat-
ing at velocityV̄ is not known, but a practical measure of its
width Ē may be deduced from the approximate value@2# of
the steepness at the inflection point. One has

Ē58S D

KCD 1/2. ~5!

The Schlo¨gl model@10,11# involves a single speciesA of
variable concentrationĀ(x,t) that reacts with speciesC1 and
C2 of constant concentrations according to

C112A

K21

K1
3A,

~6!

A

K22

K2
C2 .

For appropriate values of the parametersK1, K21, K2,
K22, C1, andC2, the cubic chemical rate admits two stable
and an unstable stationary states. The deterministic equation
for the dimensionless variableā[ā(x,t)5Ā(x,t)/C, where
C5C11C2 is constant, may be written as

]ā

]t
52K21C

2~ ā2a!~ ā2b!~ ā2g!1D
]2ā

]x2
, ~7!

with a>b>g>0. Contrary to the Fisher case, the variableā
is not bounded from above. Equation~7! admits a single
wave front connecting the two stable stationary statesā5a
and ā5g :

ā~z!5a1
g2a

11e24z/ Ē
, ~8!

wherez5x2V̄t, and where the widthĒ deduced from the
steepness at the inflection point obeys
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Ē5
4&

a2g S D

K21C
2D 1/2. ~9!

Another important difference with Eq.~3! associated with
the Fisher model is that, for the Schlo¨gl front, the propaga-
tion velocity V̄ is uniquely prescribed by the dynamics~11!,
and given by

V̄5SK21C
2D

2 D 1/2~a1g22b!. ~10!

Here we impose the condition

b,
a1g

2
, ~11!

so that the propagation velocity will be positive as for the
Fisher front.

The Fisher and the Schlo¨gl models may be considered as
prototypes of the two classes of reaction-diffusion fronts ei-
ther propagating into an unstable stationary state replaced by
a stable one or connecting two stable states. In order to make
more relevant the comparison between the two models, we
choose

g50 ~12!

for the Schlo¨gl model so that the same state,ā50, is im-
posed forz→1`.

III. MESOSCOPIC DESCRIPTION
OF THE INTERNAL FLUCTUATIONS

We have recently proved@29#, in the case of the wave
front associated with the Fisher model, that the internal fluc-
tuations may induce macroscopic deviations from the results
predicted by a deterministic description of the dynamics. In
Ref. @29#, the statistics deduced from a multivariate master
equation was first reduced to a Gaussian distribution. The
corresponding Langevin equations were then numerically
solved. We observed an increase of the mean wave-front
propagation velocity up to 25%. We now wish to use the
same method to compare the behavior of the two wave-front
types. In this respect, it is first necessary to improve the
precision of the results obtained in the case of the Fisher
wave front for the propagation velocity, and then to charac-
terize quantitatively the fluctuation effects on the front width.
Finally, the same kind of analysis has to be adapted to the
Schlögl model.

We first briefly recall the main steps of our stochastic
analysis@29# derived from the master equation@12–14#. This
latter gives the evolution of the probability of the fraction
a(x,t) of particlesA, considered as a random variable. The
chemical reaction is modeled by birth and death processes
and diffusion by a random walk. The master equation lays on
a spatial discretization into cells. The choice of the cell
lengthD l is a balance between two opposite constraints. On
the one hand, the cells must be sufficiently small to be con-
sidered as homogeneous. On the other hand, a proper de-
scription of the chemical processes inside a cell requires suf-
ficiently large cells containing a large numberN of
molecules. This latter condition justifies a system-size ex-

pansion@13# of the master equation to the first order in 1/N.
Within a Gaussian approximation, irreductible transition mo-
ments of orders higher than 2 are neglected. The effect of the
fluctuations may be reproduced by adding a Langevin force
to the deterministic equations. The mean and variance of this
force define on their own the whole statistics. The Langevin
force amplitude@14# is governed by the size of the system
and is proportional to 1/AN. In order to control the fluctua-
tion amplitude while maintaining constant the concentration
C, we introduce a spatial scaling factorn, fixing the size of a
cell by

D l5nD l 0 , N5nN0 , ~13!

whereD l 0 andN0 are reference values.
We define discrete space and time variables by

i5
x

D l
, s5

t

Dt
, ~14!

wherei ands are integers, and whereDt is the time step.
Introducing dimensionless parameters

k5KCDt, ~15!

d

n2
5

DDt

~nD l 0!
2 , ~16!

the discrete Langevin equations associated with the Fisher
model @29#, for cells of lengthD l containing in averageN
particles, are given by

ai~s11!5ai~s!1kaibi1
d

n2
~ai111ai2122ai !

1S k

nN0
D 1/2Aāi~12āi !Yi~s!

1S d

n3N0
D 1/2@Aāi211āiZi

a~s!

2Aāi111āiZi11
a ~s!#, ~17!

bi~s11!5bi~s!2kaibi1
d

n2
~bi111bi2122bi !

1S k

nN0
D 1/2Aāi~12āi !Yi~s!

1S d

n3N0
D 1/2@A22āi212āiZi

b~s!

2A22āi112āiZi11
b ~s!#, ~18!

whereYi(s), Z i
a(s), and Z i

b(s) are independent Gaussian
white noises of zero mean and unit variances obeying, in
particular,

^Zi
a~s!Zi 8

b
~s8!&5dabd i i 8dss8 . ~19!

Contrary to the deterministic case where the fractions are
linked by ā(x,t)1b̄(x,t)51, the stochastic description can-
not be reduced to a single Langevin equation but requires the
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resolution of two coupled equations for the fractionsa andb
of particlesA andB, respectively. At this lower order of the
system-size expansion, we have replaced the fractionsa and
b in the Langevin force expressions by their deterministic
valuesā andb̄. At the end of Sec. IV we shall come back to
the consequences of this approximation.

For the Schlo¨gl model, the dimensionless diffusion coef-
ficientd is also given by Eq.~16!, whereas the dimensionless
rate constantk obeys

k5K21C
2Dt. ~20!

The discrete Langevin equation forai(s11) may be written
as

ai~s11!5ai~s!2kai~ai2a!~ai2b!1
d

n2
~ai111ai21

22ai !1S k

nN0
D 1/2Aāi~ āi1a!~ āi1b!Yi~s!

1S d

n3N0
D 1/2@Aāi211āiZi~s!

2Aāi111āiZi11~s!#. ~21!

For each model, Eqs.~17!, ~18!, and~21! are numerically
solved. We thus follow the evolution in discrete times of the
fraction ai(s) andbi(s) in each celli . The total number of
cells, n, in the 1D medium considered is typically equal to
4096. The deterministic profile is chosen as initial condition.
Imposing Eq.~11! for the Schlo¨gl model, the propagation
velocity is positive. For the Fisher model, it is positive with-
out condition. Consequently, the chemical reactions tend to
increase the total fraction of particulesA in the entire system
for the two models. Particular boundary conditions@29# are
imposed in order to mimic an infinite medium. At each time
steps, where

(
i51

n

ai~s!.(
i51

n

ai~0!, ~22!

the A excess is reduced by suppressing the first cell and
creating a last cell in whichan(s)50. At the same time, the
front positionf(s) is increased byD l . For the parameter
values considered, this procedure occurs only every 103 time
steps in average. Typically, it amounts to switch into the
frame moving at the fluctuating front velocityV defined as
the derivative off(s).

Depending on the spatial scaling factorn, different as-
ymptotic regimes are reached in the moving frame. It is then
possible to define a mean stationary profile associated with a
mean stationary velocitŷV&. The mean profile widtĥE& is
deduced from the slope of the mean stationary profile at the
inflection point. Note that the notion of stationarity loses its
sense if the macroscopic properties of the front, like the pro-
file width and the propagation velocity, are defined as square
roots of the variances of the corresponding stochastic quan-
tities @17–19,24–26#.

IV. RESULTS

In this section, from the Langevin approach we deduce
the mean properties of the two front types, and compare their
deviations from the deterministic predictions. We begin with
a qualitative description of the fluctuation effects on the
mean wave-front properties.

The mean front profiles, solutions of the Langevin equa-
tions in the moving frame for different values of the spatial
scaling factorn, are given in Figs. 1 and 2 for the Fisher and
Schlögl models, respectively. Asn decreases, the noise am-
plitude increases, and the profiles become smoother what-
ever the front type. They deviate more and more from the
corresponding deterministic profiles and their mean width
increases as well as the propagation velocity, as illustrated
by the slopes of the curves in Figs. 3 and 4. In the case of the
Schlögl model, a third effect is observed in Fig. 2: the mean
fraction at the left boundary,̂a2`&, does not tend to the
stationary state valuea, the deviation increasing asn de-
creases. Since we imposedg50 and introduced deterministic

FIG. 1. Mean Fisher wave-front profiles^ai&, solutions of the
Langevin equations in the moving frame for different values of the
spatial scaling factorn. The cell number is denoted byi . The results
are obtained for the following parameter values:n54096,N05100,
D l 051, Dt51, d50.2, andk55.1231025.

FIG. 2. Same caption as Fig. 1 for the Schlo¨gl model and the
following parameter values:n54096, N05100, D l 051, Dt51,
d50.2, k51.631024, a50.5,b51023, andg50.
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fraction values in the noise expression given in Eq.~21!, the
fluctuations tend to zero in the leading edge of the front and
do not affect the value at the left boundary obeying conse-
quently^a1`&50. Following the time evolution of the instan-
taneous profile width and left plateau height, from their ini-
tial value associated with the deterministic profile, allows us
to determine when stationary conditions are reached in the
moving frame. Figure 5 illustrates, in the Schlo¨gl case, the
decay of the left plateau value observed during the transient
regime and followed by a stabilization around a well-defined
mean value. The time evolutions of the left plateau value and
profile width provide a convenient indication of the begin-
ning of the permanent regime. Note that the results given in
Figs. 1–4 have been determined once that stage has been
reached.

It is to be noted that the effect of the fluctuations on the
Fisher front exists whatever the choice of the two parameters
k andd of the model. For the Schlo¨gl model, the results are
nearly independent of the parameterb. Conversely, a devia-
tion from the deterministic predictions appears only for small
values of the parametera. We shall come back later to this
point.

We now wish to quantify the variations of the mean front
properties with the fluctuation amplitude controlled by 1/N.
To remain in a domain of reasonable computation times, the
number of spatial cells into which the 1D medium is divided
does not exceedn54096. Typically, the determination of the
data appearing in Table I requires 1–2 h on a CRAY C98
supercomputer for each model. We choose the parameter
values of the two models so that the width of the two profile
types will be comparable, and will not exceed 20% of the
medium length. This last precaution ensures that the some-
what artificial boundary conditions imposed do not perturb
the front behavior too much. More precisely, we have
checked that our results are independent of the numbern of
cells, providedn is not too small.

Let us sum up all the requirements limiting the choice of
the five parameters of the Schlo¨gl model: the left plateau
heighta must be sufficiently small~we choosea50.5!; the
unstable stationary stateb obeys Eq.~11!; the right plateau
value g vanishes; the diffusion coefficient obeys, whatever
the spatial scaling factorn, d/n2,0.25, to ensure the conver-
gence@31# of the algorithm used to solve Eq.~21! numeri-
cally; finally, the choice of a reasonable profile width, with
respect to the total cell number in the medium, imposes the
rate constant value,k. All these requirements lead to a propa-
gation velocity smaller than in the Fisher case. To obtain a
comparable accuracy in the velocity determination in both
cases, it is consequently necessary to increase the integration
time of the Langevin equation~21! associated with the
Schlögl model.

The system-size expansion parameter~1/N! is related to
the spatial scaling factorn through Eq.~13!. The variation
domains of 1/N and consequently 1/n are bounded. Indeed,
the discrepancy between stochastic and deterministic de-
scriptions becomes undetectable below a given threshold
whereas the validity of the system-size expansion imposes an
upper boundary. We observe that the wave front is destroyed
when 1/N becomes too large, greater than150 for the values
chosen here for the other parameters. The choice ofN5100,
illustrated in Table I, leads to the maximum reliable devia-
tions from the deterministic predictions. For both velocity
and width, the deviations exceed 30% for the two different

FIG. 3. Variation of the front position,f(t), with time t in the
fixed frame for Fisher’s model and for different values of the spatial
scaling factorn. The parameter values are given in the Fig. 1 cap-
tion.

FIG. 4. Same caption as Fig. 3 for the Schlo¨gl model and for
parameter values given in the Fig. 2 caption.

FIG. 5. Time evolution of the instantaneous left plateau value
a2`(t) for the Schlo¨gl model and for parameter values given in the
Fig. 2 caption. The initial condition is the deterministic profile
obeyinga2`~t50!5a50.5.
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models. In Schlo¨gl’s case, the effect on the left plateau is
always weak and remains smaller than 5%.

Figure 6 shows a log-log plot of the variations with the
spatial scaling factorn of the relative difference between the
mean front properties deduced from the Langevin equations
and the corresponding deterministic predictions. For both
models, we have represented the relative velocity deviation
(^V&2V̄)/V̄ and the relative profile width deviation (^E&
2Ē)/Ē. For the Schlo¨gl model, then dependence of the
difference~^a2`&2a!/a between the mean fraction at the left
boundary,̂ a2`&, and the stable stationary state valuea has
been added.

For the Fisher model, we obtain the following power laws
for the relative profile width deviation and the relative veloc-
ity deviation:

S ^E&2Ē

Ē
D
F

;S 1
N
D 0.3160.02

, ~23!

S ^V&2V̄

V̄
D
F

;S 1
N
D 0.3860.02

, ~24!

where the subscriptF stands for Fisher.
The precision of the exponent determination is limited by

the extension of the variation domain of 1/N, here covering a
decade and a half. Equation~24! provides confirmation of
the existence of a scaling law@29# for the propagation veloc-
ity variation with the amplitude of the fluctuations, and im-
proves the accuracy of the exponent determination. The re-
sult expressed by Eq.~23! is the existence of an analogous
power law for the profile width variation with 1/N. It is to be
noted that the maximum relative deviations for velocity and
width nearly coincide, as already observed in Table I. More-
over, the exponent values of the power laws associated with
velocity and width are close and much smaller than 1. At the
precision of the results, velocity and width vary in a similar
way with the fluctuation amplitude. The existence of corre-
lations between the fluctuations of the propagation velocity
and the profile width, qualitatively observed@27# in micro-
scopic simulations using a direct simulation Monte Carlo
method@32#, is very intuitive. Indeed, a small increase of the
profile width improves the contact between the two reactive
speciesA andB. It thus leads to an increase of the number of
particlesA produced by reaction~1!, and consequently to an
increase of the propagation velocity deduced from Eq.~22!.
Obtaining exponents smaller than 1 implies that the fluctua-
tion effects on the mean wave-front properties cannot be
considered as perturbative with respect to the system-size
expansion parameter 1/N.

For a sufficiently small value of the parametera, in the
case of the Schlo¨gl model we have

S ^E&2Ē

Ē
D
S

;S 1
N
D 1.3860.02

, ~25!

S ^V&2V̄

V̄
D
S

;S 1ND 1.3960.02

, ~26!

S ^a2`&2a

a D
S

;S 1ND 1.1560.02

, ~27!

where the subscriptS stands for Schlo¨gl.
The same comments as in the Fisher case are also valid

here for the fluctuation effect on velocity and width. How-
ever, the exponent values are much greater than for the
Fisher model, and here exceed the value 1. In addition to the
effect obtained on velocity and width, a third effect is ob-
served in bistable systems on the left plateau value. As
shown in Fig. 6, the deviation from the stationary statea also
follows a power law. As already mentioned, the maximum
deviation is weaker for the left plateau value than for veloc-
ity and width, but the slopes of the straight lines associated
with the different properties are always greater than 1. The
fluctuations in a bistable system induce a perturbative effect
on the wave-front properties for close values of the three
stationary states, i.e., close to a bifurcation point. Contrary to
the Fisher case, the choice of a small value for the system-
size expansion parameter 1/N ensures that the effect of fluc-
tuations on the wave front will also be small. Moreover, far
from a bifurcation, no fluctuation effect is observed.

The determination of the exponents is less accurate in
Schlögl’s case since the deviation decreases rapidly as 1/N
decreases, according to the large exponent values. For the
same accuracy in the property determination as in the Fisher
model, the deviation between the deterministic predictions
becomes sooner undetectable, explaining why the accessible
variation domain of 1/N is smaller in Schlo¨gl’s case.

We recall that, for the Fisher model, the scaling laws
given in Eqs.~23! and ~24! are observed whatever the pa-
rameter values. Conversely, the effect of fluctuations disap-
pears in the Schlo¨gl model if the stationary state valuea is
too large. The existence of scaling laws given in Eqs.~25!–
~27! are related to the deviation from the bifurcation of the
cubic chemical rate associated with the coalescence of the
three stationary statesa, b, andg50. Note that, for a given
value ofa, the effects we observe are nearly independent of
the unstable stationary stateb. In order to make explicit the

TABLE I. Maximum reliable deviations from deterministic predictions for the propagation velocity and
the profile width. The results of the Langevin approach are given for the two front types propagating in a 1D
medium. The parameter values have been chosen to lead to comparable width values. In each case, we
imposen54096,N05100, n51, D l 051, Dt51, andd50.2. The dimensionless rate constantk is fixed to
5.1231025 in the Fisher model, and to 1.631024 in the Schlo¨gl model.

103 V̄ 103 ^V& Ē ^E& ā2` ^a2`&

Fisher 6.300 8.33660.002 500 65565 1 1
Schlögl 1.990 3.02060.005 400 60565 a50.5 0.47360.001
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relation between the fluctuation effects and the vicinity of the
pitchfork bifurcation corresponding toa5b5g50, in Fig. 7
we give a log-log plot of the variations with the parametera
of the relative difference between the mean front properties
and the deterministic predictions. We obtain the following
power laws:

S ^E&2Ē

Ē
D
S

;S 1
a
D 1.3960.02

, ~28!

S ^V&2V̄

V̄
D
S

;S 1
a
D 1.3760.02

, ~29!

S ^a2`&2a

a D
S

;S 1a D 1.0260.02

. ~30!

Comparing Figs. 6 and 7 for the Schlo¨gl model, we observe
deep analogies between the behaviors as 1/N and 1/a vary.
In both cases, we obtain very close values for the maximum
deviation of velocity and width and a smaller value for the
maximum deviation of the left plateau height. In Fig. 7, the
exponent values associated with velocity and width, as the
distance 1/a from the bifurcation varies, are identical at the
precision of the results. Their value also coincides with the
value of the exponents determined in Fig. 6 as the system-
size expansion parameter 1/N changes. Thus, in the case of a
wave front propagating between two stable stationary states,
the deviation between stochastic and deterministic predic-
tions is a direct consequence of the well-known divergence
of fluctuations in the vicinity of a bifurcation.

The different power laws characterizing the behavior of
the deviations between the mean wave-front properties from
their predictions by deterministic equations have been de-
duced for noise expressions given in Eqs.~17!, ~18!, and
~21!, where the stochastic fractiona has been replaced by its
deterministic valueā. In this approximation the noise in the

leading edge of the front vanishes for the Fisher model and
the Schlo¨gl model withg50. We have checked that keeping
the stochastic valuea in the Langevin force expression of the
Fisher model does not lead to any change@29#. For the
Schlögl model withg50, the results given in Figs. 6 and 7
are not modified, and we obtain the same power laws for the
propagation velocity, the profile width, and the left plateau
height. Nevertheless, another fluctuation effect is observed
on the right plateau height which reaches, in the permanent
regime, a value different fromg50. The deviation obeys a
power law with the same exponent value, very close to 1, as
the deviation of the left plateau height@33#. However, using
the stochastic valuea in the Langevin force expression of the
Schlögl model with gÞ0 prevents us from studying the
wave-front propagation. Actually, the noise induces a nucle-
ation phenomenon@15,16,28#, and the leading edge, initially
prepared in the stateg, is destroyed before the passage of the
wave. In other words, the internal fluctuations generate spon-
taneous transitions from the metastable stationary stateg to
the other stable stationary statea, so that the right plateau
does not reach a stationary value smaller thana.

V. CONCLUSION

The numerical resolution of the Langevin equations with
specific internal noises deduced from master equations ex-
hibits two qualitatively different behaviors for the wave
fronts associated with cubic and quadratic chemical rates. In
the case of a wave front between two stable stationary states,
illustrated by the Schlo¨gl model, the effect of fluctuations
appears only in the vicinity of a bifurcation like the coales-
cence of the three stationary states. In these conditions, three
qualitative effects may be observed: a marked increase of the
propagation velocity and profile width, and a weaker de-
crease of the left plateau height. The variations of these ef-
fects with the fluctuation amplitude, controlled by the inverse
of the system size, 1/N, obey power laws associated with
identical exponents, at the precision of our results. Very
close behaviors are observed as the distance from the bifur-

FIG. 6. log10-log10 plot of the variations with the spatial scaling
factor n of the relative difference (^G&2Ḡ)/Ḡ between a mean
front property^G& and its deterministic predictionḠ for the two
chemical models. Fisher model:~h! G5E ~profile width!. ~j!
G5V ~propagation velocity!. Schlögl model: ~n! G5E ~profile
width!, ~m! G5V ~propagation velocity!. ~∧Ö ! G5a2` ~left plateau
value,Ḡ5a!.

FIG. 7. log10-log10 plot of the variations with the stationary state
value a of the relative difference (^G&2Ḡ)/Ḡ between a mean
front property ^G& and its deterministic predictionḠ for the
Schlögl model: ~n! G5E ~profile width!. ~m! G5V ~propagation
velocity!. ~∧Ö ! G5a2` ~left plateau value,Ḡ5a!.
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cation changes. Obtaining exponent values greater than 1
proves that the fluctuation effects may be considered pertur-
bative. Since the analytical expression of the deterministic
profile and propagation velocity are known, a pure analytical
study of the stochastic problem is consequently not hopeless.
Work in this direction is in progress, one of the goals being
the determination of a theoretical value for the exponents of
the scaling laws associated with velocity and width.

The Fisher model illustrates a qualitatively different situ-
ation. Indeed, for wave fronts propagating into an unstable
stationary state, the effect of fluctuations appears whatever
the parameter values, and independently of the vicinity of a
bifurcation. The plateau heights are absolutely not affected
by the fluctuations. Their effects consist of an increase of the
propagation velocity and the profile width. If the deviations
for both quantities obey, as for the Schlo¨gl model, power
laws with close exponents, an important difference is the
value of these exponents, much smaller than 1. Hence the
effect of fluctuations cannot be considered as perturbative,
and we believe that it is related to the existence of an infinite
set of linearly stable solutions for the deterministic reaction-

diffusion equation. In view of the nearly stable properties of
the permanent solution of the Langevin equations when it is
chosen as an initial condition of the deterministic equation,
we conjectured@29# that the effect of fluctuations is to select
a particular wave front in the continuum of possible deter-
ministic solutions. Obtaining a qualitatively different behav-
ior in the case of the Schlo¨gl model that possesses a single
wave-front solution, confirms this opinion. Unfortunately, an
analytical study of the selection mechanism of a wave front
in presence of fluctuations in the case of the Fisher model
remains difficult to implement, especially because of the
nonperturbative nature of the problem.
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