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Fluctuation effects on chemical wave fronts
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The numerical resolution of the Langevin equations, with specific internal noises deduced from master
equations, exhibits two qualitatively different behaviors for the reaction-diffusion wave fronts associated with
either a cubic or a quadratic chemical rate. In the case of a wave front between two stable stationary states,
illustrated by the Schigl model, the effect of fluctuations in the vicinity of a bifurcation induces perturbative
deviations from the deterministic predictions on observable properties, like the propagation velocity, the profile
width, and the value of the highest plateau. These deviations obey power laws that are determined. For wave
fronts propagating into an unstable stationary state, such as in the Fisher model, a nonperturbative fluctuation
effect on velocity and profile width is observed, in relation to the selection, in the presence of noise, of a
particular solution in the continuum of linearly stable deterministic solutipfB$063-651X96)03010-3

PACS numbegps): 47.70.Fw, 82.20-w, 05.40:+j

[. INTRODUCTION Our aim is not to apply these models to specific physical
problems but to use them as generic situations, and to discuss
The macroscopic description of spatiotemporal patternshe validity of the macroscopic deterministic description of
[1-3] in nonhomogeneous chemical systems involves partiahe two different wave-front types they generate. Actually,
differential equations, also encountered in various domainseducing the dynamics of a large number of individuals to
ranging from biology to physics or economics. We are inter-the deterministic evolution of macroscopic variables requires
ested here in the propagation of wave froits-11] defined a strong assumption about the range of statistical correlations
as uniformly translating solutions of reaction-diffusion equa-that we are now able to test, thanks to the improvement of
tions, replacing a homogeneous stationary state by anotheomputational tools. Whatever the nature of the elementary
homogeneous stationary state. A wave front appears as systems considered, whether it consists of molecules, living
stationary spatial structure in an appropriate moving frame.beings, or financial assets, their microscopic dynamics gen-
In the framework of population dynamics, FisHdll and  erates fluctuations around the statistical mean behavior
Kolmogorov, Petrovski, and Piskund®] introduced at the which may induce observable deviations to the predicted de-
same time a simple model in order to describe the propagderministic behavior.
tion of a favored genetic character through a population. This Near a transition, fluctuations developing in equilibrium
model, further referred as the Fisher model for the sake ofystems are amplified so as to reach a macroscopic level
briefness, is associated with a quadratic chemical rate. Thieading for example to the opalescence of a fluid maintained
corresponding reaction-diffusion equation admits wave-frontn the vicinity of the critical point. Analogous phenomena
solutions propagating between a stable stationary state arade observed in nonequilibrium systefd®2—14 for param-
an unstable stationary state. Reducing the dynamics to theter values corresponding to a bifurcation. In this respect, the
evolution in the frame moving at the wave-front velocity, a Schiayl model is certainly well suited to analyze the modifi-
linear stability analysis of the wave front does not lead to thecations of the wave-front properties when the three stationary
selection of a unique stable solution. It prescribes only astates coalesce and when the effect of fluctuations is taken
lower bound to a continuous velocity spectrum associateihto account. The Fisher model illustrates an other degener-
with the set of linearly stable solutiofd—9]. Later, Schlg], ate situation, where the fluctuations are supposed to play a
Escher, and Berrj10] proposed a different chemical model major role. Indeed, the existence of a continuum of propaga-
associated with a cubic kinetics in order to compare bistabiltion velocities associated with linearly stable wave fronts
ity in nonequilibrium systems and the liquid-gas transition.may enhance the sensitivity to fluctuations, and it may be
The Schigl model has been specially designed to give riseasked whether internal noise influences the selection of a
to a pitchfork bifurcation, in many respects analogous to theparticular propagation velocity in the spectrum.
second order phase transition observed during the liquefac- The two types of reaction-diffusion wave fronts have al-
tion of a gas in the vicinity of the critical point. Depending ready been studied using lattice-gas cellular automata
on the parameter values, the reaction-diffusion equation agL GCA) [15-22, the master equatioi23—26 or Monte
sociated with the Schip model admits either one or three Carlo simulationg23,24,27, and stochastic partial differen-
homogeneous stationary states. In this last case, it possesdies equationd28,29. Hereafter, mean refers to a time aver-
a unique stable wave-front solution connecting the two stablage of a front property for a given initial condition, and for
stationary stategl0,11]. Contrary to the Fisher case, the dy- an approach including the description of fluctuations. Up to
namics prescribes a well-defined and unique propagation vetow, discrepancies between mean wave-front properties and
locity. corresponding deterministic predictions have only been ob-
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served in the case of the Fisher model, using stochastic pawhereC is constant so that the deterministic evolution of the
tial differential equation$29] to take internal noise into ac- system reduces to a single partial differential equation for the
count. Moreover, the quantitative determination of thedimensionless fractioa=a(x,t)=A(x,t)/C:

deviation dependence on the fluctuation amplitude was lim-
ited to the propagation velocity.

In the present work, we choose to describe the internal
fluctuations at a mesoscopic level. Adopting the Langevin -
formalism, our stochastic approaf®9] amounts to adding With Osas1, and wherd is time andx the spatial coordi-
specific noise terms to the deterministic partial differentialnate.
equations. The noise statistics, deduced from a master equa- The reaction-diffusion equatior{3) admits uniformly
tion [12—14 and then reduced to a Gaussian distribution, isranslating solutionsa(x—Vt), moving with a constant ve-
designed to reproduce the macroscopic consequences of tiggity V and replacing the unstable uniform stationary state
internal fluctuations. From an analysis of fluctuation effects,2a=0 by the stable statea=1. A linear stability analysis
we intend to deduce quantitative characteristics allowing foaround such wave-front solutions in the moving frame at
a classification of the different wave-front types. Knowing velocity V does not allow for the selection of a given veloc-
that, in the case of the wave front associated with the Fishdty. Indeed, an essential feature-9] of Eq. (3) is the exist-
model, the velocity deviation from the deterministic predic-€ence of linearly stable solutions for any propagation velocity
tion varies like a power of the fluctuation amplitu®9], we  V greater than a minimum valué given by
wish to determine if an analogous behavior is also observed —
for the different wave-front type associated with the Sghlo V=2\KCD. (4)

model. We then intend to compare the exponent values of the h ical | h | | f sufficientl
scaling laws. Contrary to microscopic simulatioh$5— Mat ematical resu E5] state that a large class of sufficiently
@?Epﬂltl&ﬂ profiles evolve in time to the stable solution

numerical resolution of stochastic equations. It preserves t (x=V1) propagating \_N'th this minimum allowe_d velocity.
analytical character of the description, and makes easier , he analytlgal_e_xpressmn of the stationary profile propagat-
comparison with the deterministic analysis. In particular, then9 atvelocityV is not known, but a practlc_al meastire of its
parameters of the deterministic equations appear also in tﬁlé'dth E may be dedu_ced frpm thg approximate valagof
stochastic description contrary to the case of LG[24]. In (1€ Steepness at the inflection point. One has

such microscopic simulations, the relation between micro- _ D |2

scopic and deterministic parameters is not always obvious, E:g(—> . (5

and the precision of its determination limits the accuracy of KC

the results concerning the wave front. Nevertheless, the abil- . : . .
. i . ' The Schlgl model[10,11] involves a single species of
ity of the Langevin approach to reproduce faithfully the CoN-y ariable concentratioA(x,t) that reacts with speciegs; and

sequences of the underlying microscopic dynamics needs E) ; X
: . C, of constant concentrations according to
be checked. Up to now, the equivalence of the Langevin

ga Za
E=KCa(1—a)+D 3)

X2’

formalism and a microscopic simulation based on LGCA has Ky
been proved with regard to the geometrical properties of C,+2A=3A,
wave fronts[30]. Indeed, we obtain an excellent agreement K_g
between the fractal dimensions of two-dimensiol2D) (6)
wave fronts deduced from the two different methods. A ﬁ c,
K_2

II. TWO TYPES OF REACTION-DIFFUSION )
WAVE FRONTS For appropriate values of the parameti&rs K_;, K,

K_,, C,, andC,, the cubic chemical rate admits two stable
We analyze two different chemical models, correspondingand an unstable stationary states. The deterministic equation
either to a quadratic or a cubic chemical rate, respectivelfor the dimensionless variab=a(x,t) =A(x,t)/C, where
known as the Fisher mod¢lL—9] and the SCh|g| model C=C,;+C, is constant, may be written as
[10,11]. In each case, we consider an infinite one-

dimensional1D) medium containing different chemical spe- Ja ) — _ _ Pa
cies that diffuse with an identical coefficiebt 51~ K-iC(@a—a)(@a=p)(a=y)+D —, (7)

The Fisher mode]1-9] involves two species\ and B,
reacting according to the following autocatalytic step of ratewith «=p=y=0. Contrary to the Fisher case, the variaale

constantk: is not bounded from above. Equatidi) admits a single
wave front connecting the two stable stationary statesr
A+B—2A. (1) anda=vy:
Since reaction(1) keeps constant the total number of par- A2 =at Y@ ®
ticles, the local macroscopic concentratioms(x,t) and @ 1+e 4E’

B(x,t), obey . _
_ _ wherez=x—Vt, and where the widtlt deduced from the
A(x,t)+B(x,t)=C, (2 steepness at the inflection point obeys
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42 D \12 pansion[13] of the master equation to the first order itN1/
E= aTy (W) . (9)  Within a Gaussian approximation, irreductible transition mo-
-1 ments of orders higher than 2 are neglected. The effect of the
Another important difference with Eq3) associated with ~fluctuations may be reproduced by adding a Langevin force
the Fisher model is that, for the Schidront, the propaga- 0 the deterministic equations. The mean and variance of this
tion velocity V is uniquely prescribed by the dynamiesl), ~ force define on their own the whole statistics. The Langevin
and given by force amplitude[14] is governed by the size of the system
and is proportional to 3/N. In order to control the fluctua-

— [K_,C?D\"? tion amplitude while maintaining constant the concentration
V= 2 (aty=2B). (10 C, we introduce a spatial scaling factarfixing the size of a
cell by
Here we impose the condition
AIZVAlo, N:VNo, (13)
aty
’3<T’ (11)  whereAly andNg are reference values.

We define discrete space and time variables by

so that the propagation velocity will be positive as for the X t

Fisher front. i=—, s=—, (14)
The Fisher and the Scljbmodels may be considered as Al At

prototypes of the two classes of reaction-diffusion fronts ei—Wherei ands are integers, and whett is the time step.

ther propagating into an unstable stationary state replaced by Introducing dimensionléss parameters

a stable one or connecting two stable states. In order to make

more relevant the comparison between the two models, we k=KCALt, (15)
choose

0 12 d DAt 18

Y 7 - (VA' 0)2 ’ ( )

for the Schlgl model so that the same states=0, is im-

posed forz— +o. the discrete Langevin equations associated with the Fisher

model [29], for cells of lengthAl containing in averagél

particles, are given by
I1l. MESOSCOPIC DESCRIPTION

OF THE INTERNAL FLUCTUATIONS

d
a;(st+1)=a(s)+kab;+— (aj;1+a;_1—23;
We have recently provef29], in the case of the wave (sth=als)rkabit 7 (a1t a1 -2a)

front associated with the Fisher model, that the internal fluc- K\ 12
tuati(_)ns may induce magrqscopic Qeyiations from the _results + (_) Vai(1—a)Y;(s)
predicted by a deterministic description of the dynamics. In vNo

Ref. [29], the statistics deduced from a multivariate master

; ; JRTE O d \¥2 _
equation was first reduced to a Gaussian distribution. The + 3_) [Va_1+a,Z%(s)
corresponding Langevin equations were then numerically v"No
solved. We observed an increase of the mean wave-front —
—NataZii ()], 17

propagation velocity up to 25%. We now wish to use the

same method to compare the behavior of the two wave-front d

types. In this respect, it is first necessary to improve the bi(s+1)=b;(s)—kab;+ — (b, 1+b;_;—2b;)
precision of the results obtained in the case of the Fisher v
wave front for the propagation velocity, and then to charac- K |12
terize quantitatively the fluctuation effects on the front width. + (—) Vai(1—a)Y,(s)
Finally, the same kind of analysis has to be adapted to the vNo

Schlagl model. d \12

We first briefly recall the main steps of our stochastic + 3—) [V2—a;_1—a,Z°(s)
analysig29] derived from the master equatiph2—14. This v"No
latter gives the evolution of the probability of the fraction _ mzibﬂ(s)], (18)

a(x,t) of particlesA, considered as a random variable. The

chemical reaction is modeled by birth and death processeghere Y,(s), Z?(s), and ZP(s) are independent Gaussian

and diffusion by a random walk. The master equation lays ofvhite noises of zero mean and unit variances obeying, in
a spatial discretization into cells. The choice of the cellparticular,

lengthAl is a balance between two opposite constraints. On

the one hand, the cells must be sufficiently small to be con- <z?(s)zib,(s’)): Sap0ii’ Osg - (19
sidered as homogeneous. On the other hand, a proper de-

scription of the chemical processes inside a cell requires sufzontrary to the deterministic case where the fractions are
ficiently large cells containing a large numbéd of linked by a(x,t)+b(x,t)=1, the stochastic description can-
molecules. This latter condition justifies a system-size exnot be reduced to a single Langevin equation but requires the
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FIG. 2. Same caption as Fig. 1 for the Sajiloodel and the

Langevin equations in the moving frame for different values of thefo|lowing parameter valuesn=4096, Ny=100, Al,=1, At=1,

spatial scaling factor. The cell number is denoted by The results
are obtained for the following parameter values:4096,N,=100,
Aly=1, At=1, d=0.2, andk=5.12x10"°,

resolution of two coupled equations for the fracti@nandb
of particlesA andB, respectively. At this lower order of the
system-size expansion, we have replaced the fracticensd

b in the Langevin force expressions by their deterministic

valuesa andb. At the end of Sec. IV we shall come back to
the consequences of this approximation.

For the Schlgl model, the dimensionless diffusion coef-
ficientd is also given by Eq(16), whereas the dimensionless
rate constank obeys

k=K _,C?At. (20

The discrete Langevin equation faj(s+ 1) may be written
as

ai(st1)=aj(s)—ka(aj—a)(a—p)+ % (@+1tai—g

1/2

Vai(ai+a)(a+B)Yi(s)

—2a;)+

VNO
d 1/2 __
+ (3_) [Vai_1+aZ(s)
14 NO
—Vai 1+aiZi11(s)]. (21)

For each model, Eq$17), (18), and(21) are numerically
solved. We thus follow the evolution in discrete timef the
fraction a;(s) andb;(s) in each celli. The total number of

d=0.2,k=1.6x10"% «=0.5, =103, and y=0.

n

> ai<s)>§1 a,(0), (22)

=1

the A excess is reduced by suppressing the first cell and
creating a last cell in which,(s)=0. At the same time, the
front position ¢(s) is increased byAl. For the parameter
values considered, this procedure occurs only evetytifr@
steps in average. Typically, it amounts to switch into the
frame moving at the fluctuating front velocily defined as
the derivative ofg(s).

Depending on the spatial scaling factoyr different as-
ymptotic regimes are reached in the moving frame. It is then
possible to define a mean stationary profile associated with a
mean stationary velocitfV/). The mean profile widtE) is
deduced from the slope of the mean stationary profile at the
inflection point. Note that the notion of stationarity loses its
sense if the macroscopic properties of the front, like the pro-
file width and the propagation velocity, are defined as square
roots of the variances of the corresponding stochastic quan-
tities [17-19,24—-28

IV. RESULTS

In this section, from the Langevin approach we deduce
the mean properties of the two front types, and compare their
deviations from the deterministic predictions. We begin with
a qualitative description of the fluctuation effects on the
mean wave-front properties.

The mean front profiles, solutions of the Langevin equa-
tions in the moving frame for different values of the spatial
scaling factory, are given in Figs. 1 and 2 for the Fisher and
Schlggl models, respectively. As decreases, the noise am-

cells, n, in the 1D medium considered is typically equal to plitude increases, and the profiles become smoother what-
4096. The deterministic profile is chosen as initial condition.ever the front type. They deviate more and more from the

Imposing Eq.(11) for the Schigl model, the propagation

velocity is positive. For the Fisher model, it is positive with-

corresponding deterministic profiles and their mean width
increases as well as the propagation velocity, as illustrated

out condition. Consequently, the chemical reactions tend tby the slopes of the curves in Figs. 3 and 4. In the case of the

increase the total fraction of particulésin the entire system
for the two models. Particular boundary conditid29] are

Schlaggl model, a third effect is observed in Fig. 2: the mean
fraction at the left boundarya_..), does not tend to the

imposed in order to mimic an infinite medium. At each time stationary state value, the deviation increasing as de-

steps, where

creases. Since we imposege0 and introduced deterministic
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FIG. 3. Variation of the front positiong(t), with timet in the FIG. 5. Time evolution of the instantaneous left plateau value

fixed frame for Fisher’'s model and for different values of the spatiala_..(t) for the Schigl model and for parameter values given in the
scaling factorv. The parameter values are given in the Fig. 1 cap-Fig. 2 caption. The initial condition is the deterministic profile
tion. obeyinga_.(t=0)=a=0.5.

fraction values in the noise expression given in &f), the We now wish to quantify the variations of the mean front
fluctuations tend to zero in the leading edge of the front androperties with the fluctuation amplitude controlled bjl1/
do not affect the value at the left boundary obeying conseTo remain in a domain of reasonable computation times, the
quently(a...)=0. Following the time evolution of the instan- number of spatial cells into which the 1D medium is divided
taneous profile width and left plateau height, from their ini- does not exceed=4096. Typically, the determination of the
tial value associated with the deterministic profile, allows usdata appearing in Table | requires 1-2 h on a CRAY C98
to determine when stationary conditions are reached in theupercomputer for each model. We choose the parameter
moving frame. Figure 5 illustrates, in the Sahlacase, the Vvalues of the two models so that the width of the two profile
decay of the left plateau value observed during the transieffypes will be comparable, and will not exceed 20% of the
regime and followed by a stabilization around a well-definedmedium length. This last precaution ensures that the some-
mean value. The time evolutions of the left plateau value angvhat artificial boundary conditions imposed do not perturb
profile width provide a convenient indication of the begin-the front behavior too much. More precisely, we have
ning of the permanent regime. Note that the results given ishecked that our results are independent of the numlugr
Figs. 1-4 have been determined once that stage has beeglls, providedn is not too small.
reached. Let us sum up all the requirements limiting the choice of
It is to be noted that the effect of the fluctuations on thethe five parameters of the Schlomodel: the left plateau
Fisher front exists whatever the choice of the two parameterBeight« must be sufficiently smaliwe choosex=0.5); the
k andd of the model. For the Schip model, the results are unstable stationary staje obeys Eq.(11); the right plateau
nearly independent of the parameferConversely, a devia- Vvalue y vanishes; the diffusion coefficient obeys, whatever
tion from the deterministic predictions appears only for smallthe spatial scaling factar, d/»*<0.25, to ensure the conver-
values of the parameter. We shall come back later to this gence[31] of the algorithm used to solve ER1) numeri-
point. cally; finally, the choice of a reasonable profile width, with
respect to the total cell number in the medium, imposes the
R rate constant valud, All these requirements lead to a propa-

3000 = wy=1 gation velocity smaller than in the Fisher case. To obtain a
| __ v=158 comparable accuracy in the velocity determination in both
- v=25 cases, it is consequently necessary to increase the integration
2000 -— deterministic /~ time of the Langevin equatiorf21) associated with the
—~ prediction SCh[Q.]| model.
% - The system-size expansion paramdtEN) is related to

the spatial scaling factor through Eq.(13). The variation
domains of 1IN and consequently #/are bounded. Indeed,
the discrepancy between stochastic and deterministic de-
scriptions becomes undetectable below a given threshold
whereas the validity of the system-size expansion imposes an

1000

LI B S L R B
[T A P R

. s ' e ' e ' P upper boundary. We observe that the wave front is destroyed
0 2x10° 4x10° 6x10° 8x10° 10 when 1N becomes too large, greater thanfor the values
time t chosen here for the other parameters. The choid¢-0100,

illustrated in Table I, leads to the maximum reliable devia-
FIG. 4. Same caption as Fig. 3 for the Sajlonodel and for  tions from the deterministic predictions. For both velocity
parameter values given in the Fig. 2 caption. and width, the deviations exceed 30% for the two different
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TABLE |. Maximum reliable deviations from deterministic predictions for the propagation velocity and
the profile width. The results of the Langevin approach are given for the two front types propagating in a 1D
medium. The parameter values have been chosen to lead to comparable width values. In each case, we
imposen=4096,N,=100, v=1, Alg=1, At=1, andd=0.2. The dimensionless rate constanis fixed to
5.12x10°° in the Fisher model, and to 2x6.0™* in the Schigl model.

100V 103 (V) E (E) a. (a_.)
Fisher 6.300 8.3360.002 500 6555 1 1
Schial 1.990 3.02@:0.005 400 6055 a=0.5 0.473-0.001

models. In Schigl's case, the effect on the left plateau is  For a sufficiently small value of the parameterin the

always weak and remains smaller than 5%. case of the Schigd model we have
Figure 6 shows a log-log plot of the variations with the
spatial scaling factor of the relative difference between the (E)—E 1 | 138002
mean front properties deduced from the Langevin equations — ~ = ' (25
and the corresponding deterministic predictions. For both E s \N
models, we have represented the relative velocity deviation o
((V)—V)/V and the relative profile width deviatior(E) (V)— 1| L3e=0.02
—E)/E. For the Schigl model, ther dependence of the v ~IN : (26)
difference({a_..)— a)/a between the mean fraction at the left S
boundary{a_..), and the stable stationary state valudas
been added. (ax)—a) (1 1182002 9
For the Fisher model, we obtain the following power laws @ s N ’ @7
for the relative profile width deviation and the relative veloc-
ity deviation: where the subscrig stands for Schigl.
031+ 0.02 The same comments as in the Fisher case are also valid
<E>__E (1 23) here for the fluctuation effect on velocity and width. How-
E N ' ever, the exponent values are much greater than for the
F Fisher model, and here exceed the value 1. In addition to the
1

, (24)  served in bistable systems on the left plateau value. As
N

<v>—ﬂ
\% . shown in Fig. 6, the deviation from the stationary stat@so
follows a power law. As already mentioned, the maximum
where the subscriff stands for Fisher. deviation is weaker for the left plateau value than for veloc-
The precision of the exponent determination is limited byity and width, but the slopes of the straight lines associated
the extension of the variation domain of\l/here covering a with the different properties are always greater than 1. The
decade and a half. Equatiq24) provides confirmation of fluctuations in a bistable system induce a perturbative effect
the existence of a scaling 1a\29] for the propagation veloc- on the wave-front properties for close values of the three
ity variation with the amplitude of the fluctuations, and im- stationary states, i.e., close to a bifurcation point. Contrary to
proves the accuracy of the exponent determination. The rehe Fisher case, the choice of a small value for the system-
sult expressed by Eq23) is the existence of an analogous size expansion parametemNLénsures that the effect of fluc-
power law for the profile width variation with il/. It is to be  tuations on the wave front will also be small. Moreover, far
noted that the maximum relative deviations for velocity andfrom a bifurcation, no fluctuation effect is observed.
width nearly coincide, as already observed in Table I. More- The determination of the exponents is less accurate in
over, the exponent values of the power laws associated witBchlal's case since the deviation decreases rapidly hs 1/
velocity and width are close and much smaller than 1. At thelecreases, according to the large exponent values. For the
precision of the results, velocity and width vary in a similar same accuracy in the property determination as in the Fisher
way with the fluctuation amplitude. The existence of corre-model, the deviation between the deterministic predictions
lations between the fluctuations of the propagation velocitypoecomes sooner undetectable, explaining why the accessible
and the profile width, qualitatively observga7] in micro-  variation domain of M is smaller in Schigl's case.
scopic simulations using a direct simulation Monte Carlo We recall that, for the Fisher model, the scaling laws
method[32], is very intuitive. Indeed, a small increase of the given in Egs.(23) and (24) are observed whatever the pa-
profile width improves the contact between the two reactiverameter values. Conversely, the effect of fluctuations disap-
speciesA andB. It thus leads to an increase of the number ofpears in the Schig model if the stationary state valueis
particlesA produced by reactiofil), and consequently to an too large. The existence of scaling laws given in H&$)—
increase of the propagation velocity deduced from [@26). (27) are related to the deviation from the bifurcation of the
Obtaining exponents smaller than 1 implies that the fluctuacubic chemical rate associated with the coalescence of the
tion effects on the mean wave-front properties cannot bé¢hree stationary statas B, and y=0. Note that, for a given
considered as perturbative with respect to the system-sizealue of ¢, the effects we observe are nearly independent of
expansion parameterN/ the unstable stationary stafe In order to make explicit the

)0.3&0.02 effect obtained on velocity and width, a third effect is ob-
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FIG. 6. loglog; o plot of the variations with the spatial scaling
factor v of the relative difference(G)—G)/G between a mean

FIG. 7. logglog; plot of the variations with the stationary state
value «a of the relative difference(G)—G)/G between a mean

front property(G) and its deterministic predictio® for the two
chemical models. Fisher modell) G=E (profile width. (H)
G=V (propagation velocity Schlaggl model: (A) G=E (profile
width), (A) G=V (propagation velocity (1) G=a_., (left plateau
value,G=a).

front property (G) and its deterministic predictiotc for the
Schigyl model: (A) G=E (profile width). (A) G=V (propagation
velocity). () G=a_., (left plateau valueG=c).

leading edge of the front vanishes for the Fisher model and
the Schigl model with y=0. We have checked that keeping

r?'a“"” be_tween_the fluctuation _effectian_d tEe vicinity of thethe stochastic valua in the Langevin force expression of the
pitchfork bifurcation corresponding t@e=g8=y=0, in Fig. 7 :

. L2 . Fisher model does not lead to any chari@8]. For the
we give a log-log plot of the variations with the parameter

; > . Schiagl model with y=0, the results given in Figs. 6 and 7
of the relative d!ﬁgrence between the mean front propertle%re not modified, and we obtain the same power laws for the
and the deterministic predictions. We obtain the following !

power laws:

propagation velocity, the profile width, and the left plateau
height. Nevertheless, another fluctuation effect is observed
on the right plateau height which reaches, in the permanent

<E> _ 1 1.39+£0.02
L N(_) ' (28)  regime, a value different fromy=0. The deviation obeys a
E s \@ power law with the same exponent value, very close to 1, as
the deviation of the left plateau heigl&3]. However, using
(V) _Vj 1) 1.37x0.02 the stochastic valua in the Langevin force expression of the
—| ~| = , (290  Schigl model with y#0 prevents us from studying the
\ s \& wave-front propagation. Actually, the noise induces a nucle-
ation phenomenofi5,16,28, and the leading edge, initially
(a_)—a 1) 102002 prepared in the statg is destroyed before the passage of the
o S” a (30 wave. In other words, the internal fluctuations generate spon-

taneous transitions from the metastable stationary state

Comparing Figs. 6 and 7 for the S¢hlanodel, we observe the other stable statiqnary state so that the right plateau
deep analogies between the behaviors asdiid 1k vary. ~d0€s not reach a stationary value smaller than
In both cases, we obtain very close values for the maximum
deviation of velocity and width and a smaller value for the
maximum deviation of the left plateau height. In Fig. 7, the
exponent values associated with velocity and width, as the The numerical resolution of the Langevin equations with
distance 14 from the bifurcation varies, are identical at the specific internal noises deduced from master equations ex-
precision of the results. Their value also coincides with thehibits two qualitatively different behaviors for the wave
value of the exponents determined in Fig. 6 as the systenfronts associated with cubic and quadratic chemical rates. In
size expansion parameteNLthanges. Thus, in the case of a the case of a wave front between two stable stationary states,
wave front propagating between two stable stationary statedljustrated by the Schigl model, the effect of fluctuations
the deviation between stochastic and deterministic predicappears only in the vicinity of a bifurcation like the coales-
tions is a direct consequence of the well-known divergenceence of the three stationary states. In these conditions, three
of fluctuations in the vicinity of a bifurcation. qualitative effects may be observed: a marked increase of the
The different power laws characterizing the behavior ofpropagation velocity and profile width, and a weaker de-
the deviations between the mean wave-front properties fromrease of the left plateau height. The variations of these ef-
their predictions by deterministic equations have been defects with the fluctuation amplitude, controlled by the inverse
duced for noise expressions given in E@s7), (18), and of the system size, ¥, obey power laws associated with
(21), where the stochastic fracti@nhas been replaced by its identical exponents, at the precision of our results. Very
deterministic value. In this approximation the noise in the close behaviors are observed as the distance from the bifur-

V. CONCLUSION
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cation changes. Obtaining exponent values greater than diffusion equation. In view of the nearly stable properties of
proves that the fluctuation effects may be considered pertuthe permanent solution of the Langevin equations when it is
bative. Since the analytical expression of the deterministichosen as an initial condition of the deterministic equation,
profile and propagation velocity are known, a pure analyticalve conjectured29] that the effect of fluctuations is to select
study of the stochastic problem is consequently not hopelesg. particular wave front in the continuum of possible deter-
Work in this direction is in progress, one of the goals beingministic solutions. Obtaining a qualitatively different behav-
the determination of a theoretical value for the exponents ofgr in the case of the Schiy model that possesses a single
the scaling laws associated with velocity and width. wave-front solution, confirms this opinion. Unfortunately, an
The Fisher model illustrates a qualitatiVEIy different situ- ana|ytica| Study of the selection mechanism of a wave front
ation. Indeed, for wave fronts propagating into an unstablgn presence of fluctuations in the case of the Fisher model

stationary state, the effect of fluctuations appears whateveemains difficult to implement, especially because of the
the parameter values, and independently of the vicinity of &onperturbative nature of the problem.

bifurcation. The plateau heights are absolutely not affected

by the fluctuations. Their effects consist of an increase of the

propagation velocity and the profile wi(jth. If the deviations ACKNOWLEDGMENTS

for both quantities obey, as for the Schlanodel, power

laws with close exponents, an important difference is the This work was possible thanks to the support of the Insti-
value of these exponents, much smaller than 1. Hence thet de Developpement et des Ressources en Informatique
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